06.06.2017
   Transgenerational phenotypic plasticity - a DFG-funded research fellowship
 




As a consequence of my successful application to the German Research Foundation (DFG), I am pleased to announce that I have been awarded a two-year research fellowship (2017-2019) for the project "Transgenerational phenotypic plasticity in the cyprinid Pimephales promelas", which I will tackle during a stay abroad in Canada.

While phenotypic plasticity - the adaptation of the appearance (phenotype) to the environment within a single generation has already been well researched - examples are the melanin production of the skin induced by solar radiation (UV radiation) or muscle growth induced by exercise - not much is known about transgenerational phenotypic plasticity. This term refers to the effects of an organism's current environment on the phenotypes of future generations. This mechanism allows offspring to adapt to the environmental conditions of previous generations, to which they are likely exposed as well.

A well-known example of transgenerational plasticity in humans is a study published in the European Journal of Human Genetics by Kaati and colleagues in 2007. They found that men whose paternal grandfathers suffered from hunger as children during World War II have a shorter life expectancy. Transgenerational responses have also been observed in other animals and plants. In the presence of predators, the water flea Daphnia cucullata forms a large helmet and tail spine that prevents it from fitting into the mouth of predators easily. These effects are also observable in subsequent generations, as shown by a study from Nature by Agrawal and colleagues in 1999. The authors also found a similar effect in the field radish Raphanus raphanistrum: In the presence of herbivores, this plant produces more secondary plant substances that make it less palatable. This effect continued over generations even when no herbivore was present anymore.

In my previous research, I have studied the effects of predation risk on the behaviour and morphology of the cichlid Pelvicachromis taeniatus. Now I will be able to investigate in the fathead minnow Pimephales promelas to what extent the adaptations to predation risk affect future generations. To this end, I plan a large-scale breeding program in which clutches are split between two treatments in each generation over multiple generations. The offspring will be reared either under simulated high predation risk or under control conditions. First, in my experiments, I will separate the predator-induced transgenerational effects mediated by sperm and oocytes from the effects of an altered brood care caused by simulated high predation risk. Secondly, I will investigate the consequences of transgenerational plasticity over several generations. Here I will test the hypothesis that phenotypic plasticity favors the development of (genetic) adaptations. Third, I will compare the effects of paternal and maternal exposure to simulated predation to determine sex-specific inheritance during the transgenerational response. I will also compare the effects of directly perceived predation risk on offspring with the inherited transgenerational response.

I will carry out this project at the University of Saskatchewan in the workgroup of Prof. Douglas P. Chivers. More information can be found in the project description on GEPRIS (the "Funded Projects Information System" of the DFG) and the publications resulting from this project can be found in my profile on ResearchGate.


Logo: Official logo of the German Research Foundation (DFG)






Transgenerationale phänotypische Plastizität – ein DFG-gefördertes Forschungsstipendium

Nach meinem nächsten erfolgreichen Antrag bei der Deutschen Forschungsgemeinschaft (DFG) freue ich mich, euch mitteilen zu können, dass mir ein zweijähriges Forschungsstipendium (2017-2019) zum Projekt "Transgenerationale phänotypische Plastizität beim Cypriniden Pimephales promelas" im Rahmen eines Auslandsaufenthaltes in Kanada bewilligt wurde.

Während die phänotypische Plastizität – die Anpassung des Aussehens (des Phänotypes) an die Umwelt innerhalb einer Generation bereits gut erforscht sind – Beispiele sind die Melaninproduktion der Haut durch Sonneneinstrahlung (UV-Strahlung) oder das Muskelwachstum bei Bewegung – weiß man noch nicht viel über die transgenerationale phänotypische Plastizität. Hierrunter versteht man die Auswirkungen der gegenwärtigen Umwelt eines Organismus auf die Phänotypen nachfolgendender Generationen. Dieser Mechanismus erlaubt es Nachkommen, sich an die Umweltbedingungen vorheriger Generationen anzupassen, denen sie mit großer Wahrscheinlichkeit ebenfalls ausgesetzt sein werden.

Ein bekanntes Beispiel für transgenerationale Plastizität bei Menschen ist eine Studie aus dem European Journal of Human Genetics von Kaati und Kollegen, welche 2007 veröffentlicht wurde. Sie fanden heraus, dass Männer, deren väterliche Großväter als Kinder im Krieg unter Hunger litten, eine kürzere Lebenserwartung haben. Auch bei anderen Tieren und Pflanzen weiß man um transgenerationale Antworten. Der Wasserfloh Daphnia cucullata bildet bei der Anwesenheit von Räubern einen großen Helm und Schwanzstachel aus, mit denen er nicht mehr in das Maul von Räubern passt. Diese Effekte werden jedoch auch in nachfolgenden Generationen ausgeprägt, wie eine Studie aus Nature von Agrawal und Kollegen 1999 zeigte. Den gleichen Effekt bei nachfolgenden Generationen fanden die Autoren auch im Acker-Rettich Raphanus raphanistrum, welcher bei Anwesenheit von Pflanzenfressern mehr sekundäre Pflanzenstoffe ausprägt, welche ihn für diese ungenießbar machen.

In meiner früheren Forschung habe ich mich mit den Auswirkungen von Raubfischen auf das Verhalten und die Morphologie bei dem Buntbarsch Pelvicachromis taeniatus beschäftigt. Nun werde ich in der Dickkopfelritze Pimephales promelas untersuchen können, inwiefern diese Anpassungen an Raubfische sich auf nachfolgende Generationen auswirken. Dazu plane ich ein groß angelegtes Zuchtprogramm in dem Gelege von Fischen mehrere Generationen lang in jeder Generation aufgeteilt und die Nachkommen entweder unter simulierter hoher Prädation oder unter Kontrollbedingungen aufgezogen werden. Zuerst werde ich in meinen Experimenten die Prädator-induzierten transgenerationalen Effekte, die über Spermien und Eizellen vermittelt werden, von den Auswirkungen einer durch simuliertes hohes Prädationsrisiko veränderten Brutpflege trennen. Zweitens werde ich über mehrere Generationen hinaus die Konsequenzen transgenerationaler Plastizität feststellen. Hierbei werde ich die Hypothese überprüfen, dass phänotypische Plastizität die Entstehung von (genetischen) Adaptationen begünstigt. Drittens werde ich die Auswirkungen von väterlicher und mütterlicher Exposition gegenüber simulierter Prädation miteinander vergleichen, um die Geschlechtsspezifität transgenerationaler Plastizität zu ermitteln. Hierbei werde ich auch die Effekte von direktem Prädationsrisiko auf die Nachkommen in Relation zu einer rein transgenerationalen Antwort setzen.

Dieses Projekt werde ich an der University of Saskatchewan in der Arbeitsgruppe von Prof. Douglas P. Chivers durchführen. Mehr Informationen findet ihr bei der Projektbeschreibung auf GEPRIS (dem „Geförderte Projekte Informationssystem“ der DFG) und die aus diesem Projekt entstehenden Publikationen könnt ihr bei meinem Profil auf ResearchGate finden.


Logo: Offizielles Logo der Deutschen Forschungsgemeinschaft (DFG)